Ideal age

Note

All the AIBECS tutorials and how-to guides are available as Jupyter notebooks. You can view them with nbvieweror execute them online with binder by clicking on the badges above! (Note that binder can be slow to launch and its memory caps can be a problem when running.)

The tracer equation for the ideal age is

\[\left(\partial_t + \mathbf{T}\right) \boldsymbol{a} = 1 - \frac{\boldsymbol{a}}{τ} \, (\boldsymbol{z} \le z_0),\]

where the sink term on the right clamps the age to $0$ at the surface (where $\boldsymbol{z} \le z_0$). The smaller the timescale $\tau$, the quicker $\boldsymbol{a}$ is restored to $0$ at the surface.

AIBECS can interpret tracer equations as long as you arrange them under the generic form:

\[\big(\partial_t + \mathbf{T}(\boldsymbol{p}) \big) \boldsymbol{x} = \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{p}),\]

where $\mathbf{T}(\boldsymbol{p})$ is the transport, $\boldsymbol{G}(\boldsymbol{x}, \boldsymbol{p})$ is the net local sources and sinks, and $\boldsymbol{p}$ is the vector of model parameters. We will then use the AIBECS to simulate the ideal age by finding the steady-state of the system, i.e., the solution of

\[\partial_t \boldsymbol{x} = \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{p}) = \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{p}) - \mathbf{T}(\boldsymbol{p}) \, \boldsymbol{x} = 0.\]

In this tutorial, we will simulate the ideal age by

  1. defining functions for T(p) and G(x,p),
  2. defining the parameters p,
  3. generating the state function F(x,p) and solving the associated steady-state problem,
  4. and finally making a plot of our simulated ideal age.

We start by telling Julia that we want to use the AIBECS package and the OCIM2 circulation (the Ocean Circulation Inverse Model[1]).

using AIBECS
grd, TOCIM2 = OCIM2.load()
(, sparse([1, 2, 10384, 10442, 10443, 20825, 20883, 1, 2, 3  …  200160, 197886, 199766, 199777, 199778, 199779, 199790, 200156, 200159, 200160], [1, 1, 1, 1, 1, 1, 1, 2, 2, 2  …  200159, 200160, 200160, 200160, 200160, 200160, 200160, 200160, 200160, 200160], [0.00019778421518954799, 2.3427916742722093e-9, -1.9599474163829085e-7, -0.00019161212648881556, 4.8096149072091506e-9, -1.830592653460076e-9, 5.007679174162751e-9, -5.025164843241415e-8, 0.00018753126417941492, 4.264266869682882e-8  …  -2.196560075226544e-8, 1.0819937104262028e-10, 6.709812718407374e-9, -1.263521554746615e-9, -3.3927920410468295e-9, 7.593163378667893e-9, -7.410175543096161e-9, -3.441057669604186e-8, -2.0030251520181335e-8, 5.2794476107904204e-8], 200160, 200160))
Note

If it's your first time, Julia will ask you to download the OCIM2, in which case you should accept (i.e., type y and "return"). Once downloaded, AIBECS will remember where it downloaded the file and it will only load it from your laptop.

grd is an OceanGrid object containing information about the 3D grid of the OCIM2 circulation and TOCIM2 is the transport matrix representing advection and diffusion.

The local sources and sinks for the age take the form

function G(x,p)
    @unpack τ, z₀ = p
    return @. 1 - x / τ * (z ≤ z₀)
end
G (generic function with 1 method)

as per the tracer equation. The @unpack line unpacks the parameters τ and z₀. The return line returns the net sources and sinks. (The @. "macro" tells Julia that the operations apply to every element.)

We can define the vector z of depths with depthvec.

z = depthvec(grd)
200160-element Vector{Float64}:
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
   18.0675569520817
    ⋮
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175
 5433.2531421838175

Now we must construct a type for p the parameters. This type must contain our parameters τ and z₀.

struct IdealAgeParameters{U} <: AbstractParameters{U}
    τ::U
    z₀::U
end

The type is now ready for us to generate an instance of the parameter p. Let's use τ = 1.0 (s) and z₀ the minimum depth of the model.

p = IdealAgeParameters(1.0, 30.0)
 Row │ Symbol  Value
     │ Symbol  Float64
─────┼─────────────────
   1 │ τ           1.0
   2 │ z₀         30.0

We now use the AIBECS to generate the state function $\boldsymbol{F}$ (and its Jacobian) via

F = AIBECSFunction(TOCIM2, G)
(::SciMLBase.ODEFunction{false, SciMLBase.FullSpecialize, AIBECS.var"#f#58"{Tuple{AIBECS.var"#49#50"{SparseMatrixCSC{Float64, Int64}}}, Vector{Int64}, AIBECS.var"#G#56"{Tuple{typeof(Main.G)}, AIBECS.var"#tracers#54"{Int64, Int64}}, AIBECS.var"#tracer#55"{Int64, Int64}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, AIBECS.var"#jac#63"{AIBECS.var"#T#60"{Tuple{AIBECS.var"#49#50"{SparseMatrixCSC{Float64, Int64}}}, Int64, Vector{Int64}}, AIBECS.var"#∇ₓG#59"{Tuple{typeof(Main.G)}, Int64, Int64}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}) (generic function with 1 method)

Now that F and p are defined, we are going to solve for the steady-state. But first, we must create a SteadyStateProblem object that contains F, p, and an initial guess x_init for the age. (SteadyStateProblem comes from SciMLBase.)

Let's make a vector of 0's for our initial guess.

nb = sum(iswet(grd))  # number of wet boxes
x_init = zeros(nb)    # Start with age = 0 everywhere
200160-element Vector{Float64}:
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 ⋮
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

Now we can create our SteadyStateProblem instance

prob = SteadyStateProblem(F, x_init, p)
SteadyStateProblem with uType Vector{Float64}. In-place: false
u0: 200160-element Vector{Float64}:
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 ⋮
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

And finally, we can solve this problem, using the AIBECS CTKAlg() algorithm,

age = solve(prob, CTKAlg())
u: 200160-element Vector{Float64}:
  804.9793529617992
 2704.2854677669347
  559.462475977662
  277.6810176373405
  571.2245067452855
  406.149152964754
  416.88383377410923
  645.3785433171206
  411.64720879348016
  242.71573068291767
    ⋮
    1.220409865355737e10
    1.1820841832109232e10
    1.3783960333917145e10
    1.3083180539737396e10
    1.1999572353055946e10
    1.1227617212688963e10
    1.340205560821112e10
    1.3322655154055143e10
    1.2121012215573324e10

This should take a few seconds.

To conclude this tutorial, let's have a look at the age using AIBECS' plotting recipes and Plots.jl.

using Plots

We first convert the age in years (because the default SI unit we used, i.e., seconds, is a bit small relative to global ocean timescales).

age_in_yrs = age * u"s" .|> u"yr"
200160-element Vector{Quantity{Float64, 𝐓, Unitful.FreeUnits{(yr,), 𝐓, nothing}}}:
 2.5508256425133697e-5 yr
  8.569363537680097e-5 yr
 1.7728296067434214e-5 yr
  8.799180471180966e-6 yr
 1.8101012331269976e-5 yr
   1.28700900247406e-5 yr
  1.321025153288302e-5 yr
 2.0450811953923004e-5 yr
 1.3044312900647708e-5 yr
  7.691197387726494e-6 yr
                        ⋮
    386.72454982499835 yr
    374.57987401162416 yr
    436.78734548625823 yr
    414.58097382999324 yr
    380.24350245443077 yr
     355.7817201779908 yr
     424.6855150014931 yr
    422.16946643772474 yr
     384.0916994820051 yr

And we take a horizontal slice at about 2000m.

plothorizontalslice(age_in_yrs, grd, depth=2000u"m", color=:magma)

Or look at the horiontal mean

plothorizontalmean(age_in_yrs, grd)

That's it for this tutorial... Good job!


This page was generated using Literate.jl.

  • 1DeVries, T., & Holzer, M. (2019). Radiocarbon and helium isotope constraints on deep ocean ventilation and mantle‐³He sources. Journal of Geophysical Research: Oceans, 124, 3036–3057. doi:10.1029/2018JC014716