AIBECS functions
AIBECS.OCIM1.load — Function.loadReturns wet3d, grd, and T (in that order) from FigShare repository.
AIBECS.GridTools.vector_of_depths — Function.vector_of_depths(wet3d, grd)Returns the vector of depths of the center of wet boxes.
AIBECS.GridTools.number_of_wet_boxes — Function.number_of_wet_boxes(wet3d)Returns the number of wet grid boxes.
AIBECS.GridTools.indices_of_wet_boxes — Function.indices_of_wet_boxes(wet3d)Returns the vector of the indices of wet grid boxes.
Missing docstring for empty_parameter_table. Check Documenter's build log for details.
AIBECS.add_parameter! — Function.add_parameter!(t::DataFrame, args...; kwargs...)Adds a parameter to the parameters table t. If keyword argument optimizable = false, then observation mean and variance are set to NaN. Otherwise, these are set to keyword arguments mean_obs (and variance_obs) if supplied, or to quantity (and its square), after converting it to the preferred unit and stripping it of said unit if not. Example: TODO Note for future edit of the docs: Don't repeat yourself between add and new param functions
AIBECS.initialize_Parameters_type — Function.initialize_Parameters_type(t, PName="Parameters")Generate the type called after PName and all its functionality with it. It is recommended to use upper camel case for PName as for all user-defined Julia types. PName defaults to "Parameters".
For example, use
julia> initialize_Parameters_type(t) # creates Parametersor
julia> initialize_Parameters_type(t, "MyPara") # creates MyParaAIBECS.state_function_and_Jacobian — Function.F, ∇ₓF = state_function_and_Jacobian(Ts, Gs, nb)Returns the state function F and its jacobian, ∇ₓF.
DiffEqBase.SteadyStateProblem — Type.prob = SteadyStateProblem(F, ∇ₓF, x, p)Returns the SteadyStateProblem defined by F(x,p)=0.
Missing docstring for solve. Check Documenter's build log for details.