AIBECS functions
AIBECS.OCIM1.load
— Function.load
Returns wet3d, grd, and T (in that order) from FigShare repository.
AIBECS.GridTools.vector_of_depths
— Function.vector_of_depths(wet3d, grd)
Returns the vector of depths of the center of wet boxes.
AIBECS.GridTools.number_of_wet_boxes
— Function.number_of_wet_boxes(wet3d)
Returns the number of wet grid boxes.
AIBECS.GridTools.indices_of_wet_boxes
— Function.indices_of_wet_boxes(wet3d)
Returns the vector of the indices of wet grid boxes.
Missing docstring for empty_parameter_table
. Check Documenter's build log for details.
AIBECS.add_parameter!
— Function.add_parameter!(t::DataFrame, args...; kwargs...)
Adds a parameter to the parameters table t
. If keyword argument optimizable = false
, then observation mean and variance are set to NaN
. Otherwise, these are set to keyword arguments mean_obs
(and variance_obs
) if supplied, or to quantity
(and its square), after converting it to the preferred unit and stripping it of said unit if not. Example: TODO Note for future edit of the docs: Don't repeat yourself between add and new param functions
AIBECS.initialize_Parameters_type
— Function.initialize_Parameters_type(t, PName="Parameters")
Generate the type called after PName
and all its functionality with it. It is recommended to use upper camel case for PName
as for all user-defined Julia types. PName
defaults to "Parameters"
.
For example, use
julia> initialize_Parameters_type(t) # creates Parameters
or
julia> initialize_Parameters_type(t, "MyPara") # creates MyPara
AIBECS.state_function_and_Jacobian
— Function.F, ∇ₓF = state_function_and_Jacobian(Ts, Gs, nb)
Returns the state function F
and its jacobian, ∇ₓF
.
DiffEqBase.SteadyStateProblem
— Type.prob = SteadyStateProblem(F, ∇ₓF, x, p)
Returns the SteadyStateProblem
defined by F(x,p)=0
.
Missing docstring for solve
. Check Documenter's build log for details.