Radiocarbon
In this tutorial, we will simulate the radiocarbon age using the AIBECS by
- defining the transport
T(p)
and the sources and sinksG(x,p)
, - defining the parameters
p
, - generating the state function
F(x,p)
and solving the associated steady-state problem, - and finally making a plot of our simulated radiocarbon age.
Although this tutorial is self-contained, it is slightly more complicated than the first tutorial for simulating the ideal age. (So do not hesitate to start with the idealage tutorial if you wish.)
The tracer equation for radiocarbon is
\[\big(\partial_t + \mathbf{T} \big) \boldsymbol{R} = \frac{\lambda}{h} (\overline{\boldsymbol{R}}_\mathsf{atm} - \boldsymbol{R}) (\boldsymbol{z} ≤ h) - \boldsymbol{R} / \tau.\]
where the first term on the right of the equal sign represents the air–sea gas exchange with a piston velocity $λ$ over a depth $h$ and the second term represents the radioactive decay of radiocarbon with timescale $\tau$.
We need not specify the value of the atmospheric radiocarbon concentration because it is not important for determining the age of a water parcel — only the relative concentration $\boldsymbol{R}/\overline{\boldsymbol{R}}_\mathsf{atm}$ matters.
We start by selecting the circulation for Radiocarbon. .) (And this time, we are using the OCCA matrix by Forget [1].)
using AIBECS
grd, T_OCCA = OCCA.load()
(, sparse([1, 2, 9551, 9606, 1, 2, 3, 57, 9552, 9607 … 79928, 84632, 84659, 84660, 84661, 79891, 79929, 84633, 84660, 84661], [1, 1, 1, 1, 2, 2, 2, 2, 2, 2 … 84660, 84660, 84660, 84660, 84660, 84661, 84661, 84661, 84661, 84661], [2.2827161967151829e-7, 1.8030621712982388e-10, -2.202759122121374e-7, -1.669794081839543e-8, -8.32821319857397e-8, 3.645587487556812e-7, -2.4345873581518986e-8, 2.346272528650749e-8, -3.294980961099172e-7, 6.798120022902578e-9 … -2.337773104642457e-8, -1.0853897038905248e-8, -2.4801404742669764e-8, 7.658935248883193e-8, -2.49410804832536e-8, -2.2788300189327118e-9, -3.386139290468414e-8, -2.0539768803799346e-8, -1.8193948479846445e-8, 5.86467452504204e-8], 84661, 84661))
The local sources and sinks are simply given by
function G(R,p)
@unpack λ, h, Ratm, τ = p
return @. λ / h * (Ratm - R) * (z ≤ h) - R / τ
end
G (generic function with 1 method)
We can define z
via
z = depthvec(grd)
84661-element Vector{Float64}:
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
⋮
5062.25
5062.25
5062.25
5062.25
5062.25
5062.25
5062.25
5062.25
5062.25
In this tutorial we will specify some units for the parameters. Such features must be imported to be used
import AIBECS: @units, units
We define the parameters using the dedicated API from the AIBECS, including keyword arguments and units this time
@units struct RadiocarbonParameters{U} <: AbstractParameters{U}
λ::U | u"m/yr"
h::U | u"m"
τ::U | u"yr"
Ratm::U | u"M"
end
units (generic function with 20 methods)
For the air–sea gas exchange, we use a constant piston velocity $\lambda$ of 50m / 10years. And for the radioactive decay we use a timescale $\tau$ of 5730/log(2) years.
p = RadiocarbonParameters(λ = 50u"m"/10u"yr",
h = grd.δdepth[1],
τ = 5730u"yr"/log(2),
Ratm = 42.0u"nM")
Row │ Symbol Value Unit
│ Symbol Float64 FreeUnit…
─────┼──────────────────────────────
1 │ λ 5.0 m yr⁻¹
2 │ h 50.0 m
3 │ τ 8266.64 yr
4 │ Ratm 4.2e-8 M
The parameters are converted to SI units when unpacked. When you specify units for your parameters, you must either supply their values in that unit.
We build the state function F
and the corresponding steady-state problem (and solve it) via
F = AIBECSFunction(T_OCCA, G)
x = zeros(length(z)) # an initial guess
prob = SteadyStateProblem(F, x, p)
R = solve(prob, CTKAlg()).u
84661-element Vector{Float64}:
3.781368293693168e-5
3.775789970720427e-5
3.660570790298637e-5
3.707009029891958e-5
3.715744797475277e-5
3.715839927278402e-5
3.707936439247625e-5
3.714928379900502e-5
3.723285923778939e-5
3.7354960954899924e-5
⋮
3.638493414383268e-5
3.638153292381217e-5
3.637308898919878e-5
3.638148729939535e-5
3.641671381562705e-5
3.645599798864716e-5
3.650695782714274e-5
3.652218255431691e-5
3.653588409566982e-5
This should take a few seconds on a laptop. Once the radiocarbon concentration is computed, we can convert it into the corresponding age in years, via
@unpack τ, Ratm = p
C14age = @. log(Ratm / R) * τ * u"s" |> u"yr"
84661-element Vector{Quantity{Float64, 𝐓, Unitful.FreeUnits{(yr,), 𝐓, nothing}}}:
867.9858872976511 yr
880.1899484003243 yr
1136.3776304296644 yr
1032.1660922537947 yr
1012.7082189815559 yr
1012.4965806538729 yr
1030.0982249324456 yr
1014.5247521963137 yr
995.9480200993227 yr
968.8826854823855 yr
⋮
1186.3857759512357 yr
1187.158567909223 yr
1189.077428537788 yr
1187.16893473418 yr
1179.1685985323024 yr
1170.255845294655 yr
1158.7084282585547 yr
1155.261656759995 yr
1152.160952026347 yr
and plot it at 700 m using the horizontalslice
Plots recipe
using Plots
plothorizontalslice(C14age, grd, depth=700u"m", color=:viridis)
look at a zonal average using the zonalaverage
plot recipe
plotzonalaverage(C14age, grd; color=:viridis)
or look at a meridional slice through the Atlantic at 30°W using the meridionalslice
plot recipe
plotmeridionalslice(C14age, grd, lon=-30, color=:viridis)
This page was generated using Literate.jl.
- 1Forget, G., 2010: Mapping Ocean Observations in a Dynamical Framework: A 2004–06 Ocean Atlas. J. Phys. Oceanogr., 40, 1201–1221, doi:10.1175/2009JPO4043.1)